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Abstract—The stereospecific synthesis of 2,6-disubstituted tetrahydropyran and 3,6-dihydro[2H]pyran is described. The PdII-cata-
lyzed cyclization of the hydroxy nucleophile to the allylic alcohol takes place efficiently under mild conditions, with the stereogenic
center on the secondary allylic alcohol transfers to a newly generated stereogenic center on pyran ring via a syn-SN2

0 type process.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Tetrahydro- and 3,6-dihydro[2H]pyran rings bearing
substituents at the 2- and/or 6-positions are often ob-
served in many biologically important natural products,
such as phorboxazole,1a zampanolide,1b lasonolide,1c

ratjadone,1d leucascandrolide,1e swinholides,1f misaki-
nolides,1g sorangicin A,1h scytophycins,1i,j laulimalide1k

and so on. The cis or trans configuration of the 2,6-sub-
stituents on the rings can influence both the three dimen-
sional molecular configuration and biological activity of
these natural products. Therefore, the stereocontrolled
synthesis of 2,6-disubstituted tetrahydro- and 3,6-dihy-
dro[2H]pyrans is an important task for synthetic organic
chemistry. Although a number of methods for hydropy-
ran synthesis have been reported,2a–k an efficient and
highly stereocontrolled method for rings construction
is still in need.

Nucleophilic attack of heteroatoms to Pd p-complexes is
well known in Pd-catalyzed reactions.3 When the reac-
tion occurs to an allyl alcohol, as shown in Scheme 1,
an SN2

0-type replacement takes place to give an a-het-
eroatom-substituted alkene by addition of PdII and X�

to alkene and elimination of hydroxide anion and PdII,
while it also gives the b-heteroatom-substituted ketone
by the Wacker type process. If the former reaction can
occur intramolecularly with the hydroxy nucleophile in
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an exo- or endo-trigonal fashion, an oxygen heterocycle
would be formed, as shown in Scheme 2.4,5
In addition, if a stereogenic center of a secondary alco-
hol is designed properly, a stereospecific intramolecular
oxypalladation and elimination can take place to give
stereodefined tetrahydro- and 3,6-dihydro[2H]pyran
rings by a 1,3-chirality transfer process. Therefore, we
chose substrates 1 and 1 0 for the synthesis of tetrahydro-
pyran 2 via 6-exo-trig cyclization and 3 and 3 0 for that of
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3,6-dihydro[2H]pyran 4 via 6-endo-trig cyclization. The
expected products for these reactions are cis- and
trans-2 and 4, as shown in Scheme 3.

Herein we report a novel stereospecific ring construction
for tetrahydro- and 3,6-dihydro[2H]pyrans by the
PdCl2(MeCN)2 catalyzed cyclization of f-hydroxy-d,e-
unsaturated and b-hydroxy-c,d-unsaturated alcohols.
2. Results and discussion

2.1. Synthesis of the starting materials

The synthesis of 1 and 1 0 is described in Scheme 4. Since
the separation of remote diastereomeric diols is antici-
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Scheme 4. Reagents and conditions: (a) Swern oxidation (80%); (b) MeMgI, E

(R)-6: 49%]; (d) TBDMSCl, imidazole, DMF, rt (78%); (e) ozonolysis then P

MeOH, 0 �C–rt (91%); (g) TBAF, THF, rt (95–98%); (h) K2CO3, MeOH, rt
pated to be difficult, an enantioselective synthesis has
been undertaken. Racemic 6-hepten-2-ol 5 was prepared
from 5-hexen-1-ol by Swern oxidation and Grignard
addition of the resultant aldehyde with MeMgI. The
racemic alcohols were subjected to lipase catalyzed
kinetic acetylation by Candida antarctica lipase (Cal)
with vinyl acetate.6 An (S)-alcohol (S)-5 was recovered
in 45% yield with >98% ee along with (R)-acetate (R)-6
in 49% yield with >98% ee. Silylation of (S)-5 with
TBDMSCl gave 7 in 78% yield. Ozonolysis and Wittig
reaction with triphenylphospholideneacetone gave
(S)-8-TBDMSoxy-3-nonen-2-one 8 in 79% yield in two
steps. Reduction of the carbonyl group with NaBH4 in
the presence of CeCl3 heptahydrate gave diastereomeric
alcohols in a 1:1 ratio in 91% yield, which was acetylated
again with vinyl acetate in the presence of lipase Cal to
33
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h3P@CHCOMe, CH2Cl2, �78 �C to rt (79%); (f) NaBH3, CeCl3Æ7H2O,

(88%).
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give the (R)-acetate 10 in 45% yield and the (S)-alcohol
(S)-9 in 48% yield. After desilylation of (S)-9, diol 1 was
obtained in 95% yield. On the other hand, treatment of
10 with TBAF followed by methanolysis with K2CO3 in
methanol gave 1 0 in 86% yield (Scheme 5).
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Scheme 5. Reagents and conditions: (a) LDA, THF, �78 �C (79%); (b)

TBDMSCl, imidazole, DMF, rt (82%); (c) NaBH4, CeCl3Æ7H2O,

MeOH, 0 �C–rt (13: 48%, 13 0: 45%); (d) TBAF, THF, rt (3: quant., 3 0:

quant.); (e) 2,2-dimethoxypropane, CSA, rt (14: 86%, 14 0: 86%).
The synthesis of 3 and 3 0 was performed in four steps.
The lithium salt of 5-methyl-3-hexen-2-one, generated
with LDA in THF, was quenched with 3-phenylprop-
anal to give 7-hydroxy-2-methyl-9-phenyl-3-nonen-5-
one 11 in 79% yield. Silylation of the secondary alcohol
gave silyl ether 12 in 82% yield, whose reduction with
NaBH4 in the presence of CeCl3 heptahydrate gave a
mixture of 13 and 13 0. These were separable by flash col-
umn chromatography on silica gel affording the less
polar isomer 13 in 48% yield and polar isomer 13 0 in
45% yield. Deprotection of silyl ether 13 and 13 0 with
TBAF gave 3 and 3 0, respectively, in quantitative yields.
The relative structures were determined by NOE exper-
iments with 1H NMR after the formation of acetonides
14 and 14 0. Thus, the polar isomer was identified to be a
syn diol when the carbon chain was described in
extended structure and while the less polar was an anti
diol.

2.2. Pd-Catalyzed 6-exo-trigonal and 6-endo-trigonal
cyclizations

When diol 1 was treated with 10% mol of
PdCl2(MeCN)2 in THF at 0 �C, trans-(E)-tetrahydropy-
ran trans-2E was obtained as a single stereoisomer in
71% yield.7 Meanwhile, that of 1 0 under the same condi-
tions gave cis-(E)-tetrahydropyran cis-2E8 as a single
isomer in 78% yield. The structures of the products were
identified by NOE experiments with 1H NMR. Both
reactions proceeded very smoothly to completion within
30 min under the mild reaction conditions employed, in
nearly quantitative yield.9 The results indicate that the
1,3-chirality transfer of the starting allylic alcohol to
the tetrahydropyran ring is perfectly controlled, in
which a syn-SN2

0 type cyclization takes place stereospe-
cifically by PdII-promoted 6-exo-trig cyclization. This
stereochemical outcome is more interesting in compari-
son with the case of the nitrogen nucleophile in the
piperidine synthesis (Scheme 6).10
On the other hand, when diol 3 was subjected to the
above conditions at rt, cis-4 was obtained as a single dia-
stereoisomer in 68% yield after 7 h.11 The reaction of 3 0

with PdCl2(MeCN)2 under the same reaction conditions
was completed in 23 h to give trans-4 in 60% yield.11

Both reactions afford a syn-SN2
0 type product, the same

as that in the above 6-exo-trig cyclizations. Although
6-endo-trig cyclization is allowed in Baldwin�s rule,12

the reaction rate for the 6-endo-type cyclization is slower
than that in the exo-type (Scheme 7).
In the case of the 6-exo-trig cyclization of 1, we consid-
ered its mechanism as shown in Scheme 8. If the chiral
secondary allylic alcohol controls the initial formation
of the Pd-complex I with the b-face of the olefinic plane,
it is in equilibrium with complex II by a ligand exchange.
A syn-attack of the hydroxy nucleophile to the carbon of
II occurs from the same side of the Pd-complex in a
6-exo-trig fashion to give the r-Pd complex III. Subse-
quently, syn-elimination of PdCl(OH) afforded trans-
pyran trans-2E with an (E)-olefinic substituent.13,14

On the other hand, as in the case of the 6-endo-trig
cyclization of 3 or 3 0, the mechanism cannot be fully
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elucidated at this point.15 Further studies are currently
in progress.
3. Conclusion

2,6-Disubstituted tetrahydro- and 3,6-dihydro[2H]-
pyrans were synthesized stereospecifically by intra-
molecular PdII-catalyzed cyclization of allylic alcohol
with a hydroxy nucleophile under mild conditions. This
result should be useful not only for the synthesis of
these hydrated pyran rings, but also to give further
mechanistic insights into the intramolecular oxypallada-
tion reaction.
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